
www.manaraa.com

[19] R. Van Renesse, K. P. Birman, and S. Ma�eis. Horus: A Felxible Group CommunicationSystem. Communications of the ACM, 39, April 1996.About the authors:DANNY DOLEV is a professor at the Institute of Computer Science, the Hebrew University ofJerusalem. Author's Present Address: Institute of Computer Science, the Hebrew Universityof Jerusalem, Jerusalem 91904, Israel; email: dolev@cs.huji.ac.il.DALIAMALKI is a member of technical sta� at AT&T Research. Author's Present Address:AT&T Bell Laboratoris, 600 Mountain Ave., Murray Hill, NJ 07974; email: dalia@research.att.com

13



www.manaraa.com

published. Previous version available as TR 95-1533, Department of computer science, CornellUniversity.[6] S. E. Deering. Host extensions for IP multicasting. RFC 1112, SRI Network InformationCenter, August 1989.[7] D. Dolev, D. Malki, and H. R. Strong. An Asynchronous Membership Protocol that ToleratesPartitions. TR CS94-6, Institute of Computer Science, The Hebrew University of Jerusalem,Jerusalem, Israel, 1994.[8] Joseph Y. Halpern and Yoram Moses. Knowledge and Common Knowledge in a DistributedEnvironment. In 3rd Annual ACM Symp. on Principles of Distributed Computing, pages 50{61,1984.[9] M. F. Kaashoek and A. S. Tanenbaum. Group Communication in the Amoeba DistributedOperating System. In 11th Intl. Conference on Distributed Computing Systems, pages 882{891,May 1991.[10] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An E�cient ReliableBroadcast Protocol. Operating Systems Review, 23(4):5{19, October 1989.[11] I. Keidar and D Dolev. Increasing the Resilience of Atomic Commit, at No Additional Cost.In Symp. on Principles of Database Systems, pages 245{254, May 1995.[12] I. Keidar and D. Dolev. E�cient Message Ordering in Dynamic Networks. In Annual ACMSymp. on Principles of Distributed Computing, 1996. to be published.[13] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. ACM,21(7):558{565, July 78.[14] D. Malki. Multicast Communication for High Availability. PhD thesis, Inst. of ComputerScience, The Hebrew University of Jerusalem, 1994.[15] D. Malki, Y. Amir, D. Dolev, and S. Kramer. The Transis Approach to High Availability Clus-ter Communication. TR CS94-14, Inst. of Comp. Sci., The Hebrew University of Jerusalem,June 1994.[16] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for DistributedSystems. IEEE Trans. Parallel & Distributed Syst., 1(1):17{25, Jan 1990.[17] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos. Totem: A Fault-Tolerant Multicast Group Communication System. Com-munications of the ACM, 39, April 1996.[18] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and Using Context Infor-mation in Interprocess Communication. ACM Trans. Comput. Syst., 7(3):217{246, August1989. 12



www.manaraa.com

coordination and of reconciling \wishes" with impossibilities, such as the ones cited previously inthe section \The Partitionable Operation Methodology".The process of converting uniprocessor software to a distributed fault-tolerant program is notmade automatic by our tools. Future development in this area must better explore programmingmethodologies integrated with group communications frameworks. In Transis, we have emphasizedmethodologies and enhanced tools for taking advantage of the partitionable membership service. Weare now taking the next step, by pursuing the development of services that implement higher levelbuilding blocks (e.g., replication services that automatically reconcile merged partitions, presentedin [2] and [12]).7 AcknowledgmentsWe acknowledge the contribution of members of the Transis project: mainly Yair Amir and ShlomoKramer of the original Transis team who designed and shaped Transis and those who currentlyextend the system David Breitgand, Gregory Chockler, Yair Gofen, Nabil Huleihel, Idit Keidar,and Roman Vitenberg. Various projects of many other students have helped in bringing Transis toits current state.Various components of the Transis project were funded in part by the Ministry of Scienceof Israel, grant number 0327452, by the German Israel Foundation (GIF), grant number I-207-199.6/91, and by the United States - Israel Binational Science Foundation, grant number 92-00189.The Transis home page is http://www.cs.huji.ac.il/papers/transis/transis.html.References[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communication Sub-System for HighAvailability. In 22nd Annual International Symposium on Fault-Tolerant Computing, pages76{84, July 1992.[2] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and E�cient Replicationusing Group Communication. Technical Report CS94-20, Institute of Computer Science, TheHebrew University of Jerusalem, Jerusalem, Israel, 1994.[3] K. P. Birman. The Process Group Approach to Reliable Distributed Computing. Communi-cations of the ACM, 36(12), December 1993.[4] K. P. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems. In 11thAnn. Symp. Operating Systems Principles, pages 123{138, Nov 1987.[5] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the Impossibility of GroupMembership. In Annual ACM Symp. on Principles of Distributed Computing, 1996. to be11



www.manaraa.com

The Reliable Multicast Communication ProtocolThe reliable transport engine within a local area net-work, derived from the Trans protocol [16], utilizesthe available broadcast hardware for disseminatingmessages in a single transmission. Acknowledgmentsare piggybacked on regular messages, and are thusalso broadcast once. Messages form a \chain" ofacknowledgments, which implicitly acknowledge for-mer messages in the chain. We denote by X:n then'th message from machine X , and a piggybacked ac-knowledgment for it by X:n,! . For example, we couldhave the following scenario on the network:A:1 ; A:1,! B:1 ; B:1,! C:1 ; C:1,! D:1 ; :::Machines in a multicast cluster can recognize messagelosses by analyzing the received message chains. Forexample, machine A could recognize that it lost C:1after receiving the sequence: A:1; A:1,! B:1; C:1,! D:1 .Therefore, A emits a negative-ACK (A:2, dashed ar-row) on message C:1, requesting for its retransmis-sion. Machine A defers its acknowledgment of D:1until C:1 is recovered, since messages that follow\causal holes" are not incorporated for delivery untilthe lost messages are recovered. Meanwhile, A canacknowledge B:1. In this way, the acknowledgmentsform the causal relation among messages directly.

A.1

B.1

C.1

D.1

A.2

Details on the performance of the reliable multicast engine are provided in [14].6 ConclusionsTransis is a transport level group communication service that simpli�es the development of fault-tolerant distributed applications, in that it presents a coherent behavior to the user upon failures.In a world of growing dependency on computers, the ability to continue operation in a dynamicenvironment is crucial. We were able to extend a successful approach for developing fault toler-ant distributed applications using group communication, that was limited by primary-componentassumptions, into large scale environments where questions like partitioning and exploiting the net-work hardware raise important challenges. Transis supports partitionable operation and providesthe strictest semantics possible in the case of network failures. Through a precise de�nition ofpartitionable operation, we provide the means of recognizing the di�culties inherent in distributed10



www.manaraa.com

multicast cluster multicast clustermulticast cluster

selective

port

group domain group domain group domain

group domain

Figure 4: The Transis Communication Model{ Messages are not retransmitted unless explicitly requested to do so by means of a negativeacknowledgment.{ Positive acknowledgments, required for determining the arrival of messages, are piggy-backed onto regular messages. If no regular message is transmitted, then periodically,an empty message containing only acknowledgments and an \I am alive" indication willbe sent.Modern networks exhibit extremely low message loss rates, hence these mechanisms havebecome widely used (see, for example, [3, 10, 16, 18]).� Detection of lost messages must occur as soon as possible. Suppose that machines A, B andC send successive messages. If machine D uses sender-based FIFO order to detect messageloss, and misses the message from A, then it will not detect the loss until A transmits anothermessage. On the other hand, if there are additional relationships between messages sent bydi�erent machines, then as soon as B transmits its message with a reference to A's message,D can possibly detect the loss of A's message. Early detection saves bu�er space by allowingprompt garbage collection, regulates the ow, and prevents cascading losses.� Under high communication loads, the network and the underlying protocols can be driven tohigh loss rates. For example, based on experiments using UDP/IP communication betweenSun Sparcstations interconnected by 10-Mbit Ethernet, we found that under normal load theloss rate was approximately 0.1%, but under extreme conditions, the loss rate went up to30%. Such high loss rates would make the recovery of lost messages costly, and can cause anavalanche e�ect which further increases the load on the communication medium. To preventthis, it is crucial to control the ow of messages in the network. In the Transis system weemploy a ow control method called the network sliding window (see [15] for further details).9



www.manaraa.com

4 The Hierarchical Broadcast DomainWe have discussed the Transis partitioning mechanism which is crucial in large and dynamic set-tings. A large network in also challenging in the diversity of communication media and its structure.Transis provides high throughput communication through protocols that exploit the underlying net-work structure, and was pioneering in demonstrating high performance communication in practice.We model a wide area network as a hierarchy of multicast clusters , as depicted in Figure 4. Eachmulticast cluster represents a domain of machines that are capable of communicating via broadcasthardware or via selective-multicast hardware (e.g. the Deering IP-multicast [6]). In reality, such acluster could be within a single Local Area Network (LAN), or multiple LANs interconnected bytransparent gateways or bridges.Clusters are arranged in a hierarchical group structure, with representatives from each localdomain participating in the next level up the hierarchy. Each level of the hierarchy is a groupdomain that maintains the group services (of Section 2) internally. Each cluster employs theTrans-based reliable message recovery engine, described below in Section 5, which achieves veryhigh message throughput. Between clusters, other forms of communication are used. In each cluster,a representative selectively �lters messages leaving the cluster, and forwards incoming messages intothe cluster.There are several key ideas in the design of the hierarchical structure:1. Each level of the hierarchy abstracts the levels below it and maintains group services at thelevel itself. In this way, group services are made scalable and maintainable in a wide areanetwork.2. Each port selectively passes messages to and from the clusters it belongs to, thus avoidingooding a wide area network with local tra�c.3. The multicast protocol within a multicast cluster exploits the available broadcast hardwareto achieve high throughput group communication.5 A High Performance Reliable Multicast EngineThe transport service within a multicast cluster employs the reliable multicast engine presented(briey) in the accompanying side bar (a detailed description can be found in [14]). There areseveral important principles that underlie our design:� In systems that do not lose messages very often, it is preferable to use a negative-acknowledgmentbased protocol. Thus: 8



www.manaraa.com

new one if it is has been lost. Members of di�erent components have information that allows themto totally-order past view change events. Thus, it is possible to track a primary component andeventually recover from the possible loss of it (even in the case of a total network failure). Thedi�culty in recovering from the loss of a primary component is that the recovered machines may bein a symmetrical situation after the recovery, as illustrated below. Transis assists the applicationdeveloper is such situations by reporting hidden-views, and thus breaking the apparent symmetry.We illustrate the breaking of symmetry through an example scenario (depicted in Figure 3).
A

B C

A

B C

A

B C

A

B C

A B C

A,B,C A,B,C A,B,C

A,B

B,C

A,C A,C

connectivity

time

A,B

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Figure 3: Breaking the symmetry between A and CThere are three machines in the system, denoted A, B and C, and each majority of two ormore machines is considered primary. A, B, and C start as one connected component f A, B, C g.Later, C splits from f A, B g. A reports the local view f A, B g, but B detaches from A before Bsucceeds in reporting it. Following that, B connects back with C, and C reports the view f B, Cg, B crashes, and C joins with A. First, think of this scenario without the hidden (dashed) view fA, B g reported at B. A and C seem to be in symmetrical state; A's history of view change eventsconsists of f A, B, C g, f A, B g and C's history is f A, B, C g, f B, C g. Unless B had passedinformation to C about the possible hidden view f A, B g, A and C cannot determine which has amore up-to-date state, since B is missing. On the other hand, if B is indeed informed of the hiddenview f A, B g, then it can carry this information into the next connected component f B, C g.Exactly how the hidden view information is used is application dependent. The interestedreader is referred to [2, 12, 11] for applications that use the Transis partitionable group service.7



www.manaraa.com

3. Upon recovery, only the missing messages should be exchanged to bring the machines backinto a consistent state.Unfortunately, not everything in our \wish-list" is possible. When there is no bound on theduration of message passing in the network (the system is asynchronous), Chandra et al. haveshown that it is impossible to maintain a primary component, whose membership is known andagreed upon in all circumstances [5]. The impossibility of maintaining a primary component meansthat progress might completely halt in applications that disallow all but one part of the systemto perform operations (e.g., when the primary component makes decisions or answers on behalf ofthe system). Thus, in some applications, the �rst item in the list above might be impossible toaccomplish.Furthermore, knowing which messages have been delivered by all of the computers at any pointin time requires instantaneous knowledge about message delivery, and is provably impossible toachieve in an asynchronous distributed environment [8]. Thus, the second item is impossible.Therefore, it is inevitable that we must operate with some margin of uncertainty. This, however,does not imply that the situation need be completely chaotic.First, not all applications require that progress is made exclusively in a primary component.Recall the \Wiredville" town hall example from the introduction: It is possible to allow all partsof the partitioned network to continue counting separately, and upon recovery, to merge them(avoiding double-counting of votes). Simple unordered di�usion of messages between previouslydetached components can be accomplished by gossiping after partitions are mended.Second, when local views merge in Transis, the di�usion of messages can be done very e�ciently.After merging several previously-detached components, each component can be represented by asingle member. So for example, in the \Wiredville" town hall application, a single computer in eachhalf of the network could replay messages upon merging on behalf of its entire component. The set ofmessages delivered within the component before merging, within the duration it was detached fromthe rest of system, can be replayed by this representative member alone. If further failures occurduring merging, then representatives must be chosen out of any previously connected componentfor which message-replaying has not completed. Due to virtual synchrony, it is guaranteed that allof the other members in the component have delivered during the detached-period the same set ofmessages as the representative.In the \Wiredville" application, partitioning is exceptionally easy to handle since a tally isadditive. Unfortunately, many applications can allow updates only within a primary component.For this kind of applications, our approach provides support for recovering a primary componentif it has been lost. In order to maintain progress in face of partitions, members in all of thecomponents can remain operational and wait to merge with a primary component or to generate a6



www.manaraa.com

behavior when components merge. The net e�ect is that the application builder is presented with acoherent system behavior, and can employ less complex failure handling code within the application.Terminology:Local View: A list of machines, reported to a member. The local view is modi�ed by a viewchange event.Messages: Messages are multicast to the group, with varying requirements: FIFO, causal,agreed, safe.Requisites:Self Inclusion: A local view at a machine always includes the machine itself.Same Order View changes occur in the same order at all their overlapping members.Virtual Synchrony: Between consecutive view change events, the same set of messages isdelivered by all overlapping members.In addition, message delivery maintains the multicast requisites, FIFO, causal,agreed or safe.Uniformity: A view change reported to a member is reported to all of the other members, aseither a regular or a hidden view change (a hidden view has the same view compositionas a regular one, but is marked \hidden").A hidden view change reported to a member may be reported as a regular view changeelsewhere, in an execution that is otherwise identical to this member's.Liveness: A machine that does not respond to messages sent to it is removed from the localview of the sender within a �nite amount of time. Every connected set of machineseventually forms a common view, reported to all of the members.Safety: Machines are removed from a view only by the Liveness property.Figure 2: A Framework for Partitionable Group Service3 The Partitionable Operation MethodologyAfter a network partitions, here is what we would like the situation to be in any distributedapplication:1. At least one component of the network should be able to continue making updates. Thesituation should be the same whether other components are down or the network is detached.2. Each machine should know about the update messages that reached all of the other machinesbefore they were disconnected. 5



www.manaraa.com

group

module

Safe

FIFO

Transis

message delivery
group status

Agreed

Causal

n e t w o r k

a p p l i c a t i o n

send messages

Figure 1: The System Model Structureapplications).The local view provided by a group service may not always be accurate, since failure detectionin a realistic system is generally unreliable. At any point in time, local views at di�erent machinesmay be identical, overlapping or non-intersecting. However, the signi�cance of local views as wellas hidden views is in the inter-relations between views at di�erent machines. The behavior of thecollective group service is de�ned through the requisites given informally in Figure 2 (for a fullspeci�cation and a description of a group membership protocol that speci�es it, see [7]).Within the lifetime of each view, the group module delivers multicast messages. Transis supportsseveral types of multicast services: FIFO multicast guarantees sender-based FIFO delivery order.Causal multicast preserves the potential causal order among messages (as de�ned in [13]). Agreedmulticast enforces a unique order among every pair of messages in all of their destinations2. A safemulticast guarantees a unique order of message delivery, and in addition, delays message deliveryuntil the message is acknowledged by the transport layers in all of the machines in the group, thusguaranteeing delivery atomicity in case of communication failures.View change reporting and message delivery at di�erent members of the group are coordinatedby the group service. This principle is called virtual synchrony [4], and is extended in Transis topartitionable environments. Intuitively, the virtual synchrony principle guarantees that a local viewreported to any member is reported to all other members, unless they crash. In case of partitions,we guarantee virtually synchronous behavior within each isolated component, and coherent merging2Some prior work refers to this as total or atomic ordering.4



www.manaraa.com

the information gradually. On the other hand, a primary component model would deny progressin this scenario.However, the main concern with the existence of multiple active components is that inconsistentoperations may occur in di�erent parts of the system. Some applications can cope with relaxedconsistency and allow actions to be completed within disconnected components. For example, inthe \Wiredville" story, each component could count votes presented to it separately, since the tallyis additive. Other examples are Command, Control and Communication applications, where it ismore important to present the user with up to date information rather than trying to maintainsystem-wide consistency while preventing the user from getting access to any information duringpartitions. The caveat is that allowing inconsistencies may eventually require the user's applicationto reconcile information once the network recovers. A third example is an airline reservation systemthat may allow booking to be performed in detached components and su�er some margin of over-booking. More sophisticated protocols (such as the replication protocol in [12]) may allow gradualdi�usion of conict-prone operations in partitionable environments.The Transis approach provides the required exibility for building diverse fault tolerant appli-cations, some of which bene�t from continued partitioned operation, and some of which do not.For the latter kind of application, it is possible to prevent multiple components from co-existing.Today, the Transis approach to partitionable operation has been adopted in other systems, andwe have been collaborating for several years with the developers of the Horus system [19] and theTotem system [17], who have incorporated some of our ideas into their architectures.2 The Group ServiceWe begin the description of the Transis system with a general overview of the group communicationservice. Transis provides transport level multicast communication services. As shown in Figure 1,it resides below the user application and above the network layer.We use the term service to refer to the collective work of corresponding modules in all themachines in the network. Thus, group service refers to the work of the collection of group modules.In Transis, the group service is a manager of group messages and group views. Each groupmodule maintains a local view (a list) of the currently connected and operational participantsin the network. Each local view has a certain lifetime, starting when it is initially reported tothe application and ending when its composition changes through a view change event (wherebymembers leave it or join it). In addition to regular views, a group module reports hidden views tothe application. A hidden view has the same composition as a regular view, but is denoted \hidden".Intuitively, it indicates to the user that the view has failed to form but may have succeeded to format another part of the system (the next section elaborates on the utility of hidden views in some3



www.manaraa.com

� Meeting the needs of a large network through a hierarchical communication structure, withgateways selectively �ltering messages among domains.� Exploiting the available network multicast within each local area network (LAN) and provid-ing fast cluster communication.Transis has an e�cient protocol for reliable multicast, derived from the Trans protocol [16],that employs the Deering IP-multicast mechanism [6] for disseminating messages using se-lective hardware-multicast. Coupled with a network-based ow control mechanism that wedeveloped, the protocol provides high throughput group communication.Partitionable OperationThe Transis approach distinguishes itself in allowing partitionable operation and in supporting con-sistent merging upon recovery. The partitioning of a group results in several disjoint components.Any algorithm that depends on the existence of a single component (a primary component) in thesystem is unable to meet the needs of an important class of distributed applications. Our workassumes that the network might partition, and seeks semantics that provide the application withaccurate information within each partitioned component.Our approach is substantially di�erent from similar systems that existed before Transis waslaunched. For example, the Isis system designates one of the components as primary, and shutsdown the non-primary components [4, 3]. During the period prior to shutdown and before thepartition is detected, it is possible for a non-primary component in Isis to continue operation,and to perform operations inconsistently with the primary component. Moreover, if the primarycomponent ceases to exist (as, provably, cannot be prevented [5]), then the entire system blocksuntil it can be re-established.Another approach, taken in the Trans/Total system [16], allows the system to continue opera-tion only if enough processors are operational and connected to maintain the resiliency requirement.In the Amoeba system [9], a partitioned group may continue operation within multiple components,unless the user speci�es otherwise. However, the system provides no means for merging the com-ponents upon recovery.Partitionable operation is advantageous in increasing the availability of service. In variousenvironments, e.g. wireless networks, communication failures frequently occur and the primarycomponent may be lost. For example, a system of four machines, denoted A;B;C and D, mayshift from a (fA;Bg, fC;Dg) con�guration to a (fA;Cg, fB;Dg) con�guration, and back. If thisoccurs, information exchanged between A and B in the �rst con�guration can reach the rest of thesystem while in the second con�guration. Thus, partitionable operation may succeed in di�using2



www.manaraa.com

The Transis Approach toHigh Availability Cluster Communication�Danny Dolev and Dalia MalkiA unique multicast service designed for partitionable operation is examined here.1 IntroductionIn the local elections system of the municipality of \Wiredville"1 , several computers were used toestablish an electronic town hall. The computers were linked by a network. When an issue wasput to a vote, voters could manually feed their votes into any of the computers, which replicatedthe updates to all of the other computers. Whenever the current tally was desired, any computercould be used to supply an up-to-the-moment count.On the night of an important election, a room with one of the computers became crowded withlobbyists and politicians. Unexpectedly, someone accidentally stepped on the network wire, cuttingcommunication between two parts of the network. The vote counting stopped until the networkwas repaired, and the entire tally had to be restarted from scratch.This would not have happened if the vote-counting system had been built with partitions inmind. After the unexpected severance, vote counting could have continued at all the computers,and merged appropriately when the network was repaired.The \Wiredville" story illustrates some of the �ner points that motivated our work in theTransis project [1], a large scale multicast service designed with the following goals:� Tackling network partitions and providing tools for recovery from them.Transis was designed to support partitionable operation, in which multiple network compo-nents that are (temporarily) disconnected from each other operate autonomously. Whennetwork partitions occur, as in \Wiredville" and in more complicated situations, Transis pro-vides enhanced facilities for an application programmer to construct applications that operateconsistently in multiple components of a partitioned network, and to merge these componentsgracefully upon recovery.�This is a pre-print of a paper to appear in the Communication of ACM, 39, 4 (April 1996).1The story is based on a real event, but names and details have been changed.1


